Spread Spectrum Technology
- Anne Shroble
- Nov 3, 2015
- 4 min read
What is Spread Spectrum?
Spread spectrum is a form of wireless communications in which the frequency of the transmitted signal is deliberately varied. This results in a much greater bandwidth than the signal would have if its frequency were not varied.
A conventional wireless signal has a frequency, usually specified in megahertz (MHz) or gigahertz gigahertz), that does not change with time (except for small, rapid fluctuations that occur as a result of modulation). When you listen to a signal at 103.1 MHz on an FM stereo receiver, for example, the signal stays at 103.1 MHz. It does not go up to 105.1 MHz or down to 99.1 MHz. The digits on the radio's frequency dial stay the same at all times. The frequency of a conventional wireless signal is kept as constant as the state of the art will permit, so the bandwidth can be kept within certain limits, and so the signal can be easily located by someone who wants to retrieve the information.
There are at least two problems with conventional wireless communications that can occur under certain circumstances. First, a signal whose frequency is constant is subject to catastrophic interference. This occurs when another signal is transmitted on, or very near, the frequency of the desired signal. Catastrophic interference can be accidental (as in amateur-radio communications) or it can be deliberate (as in wartime). Second, a constant-frequency signal is easy to intercept, and is therefore not well suited to applications in which information must be kept confidential between the source (transmitting party) and destination (receiving party).
To minimize troubles that can arise from the above mentioned vulnerabilities of conventional communications circuits, the frequency of the transmitted signal can be deliberately varied over a comparatively large segment of the electromagnetic radiation spectrum. This variation is done according to a specific, but complicated mathematical function. In order to intercept the signal, a receiver must be tuned to frequencies that vary precisely according to this function. The receiver must "know" the frequency-versus-time function employed by the transmitter, and must also "know" the starting-time point at which the function begins. If someone wants to jam a spread-spectrum signal, that person must have a transmitter that "knows" the function and its starting-time point. The spread-spectrum function must be kept out of the hands of unauthorized people or entities.
Most spread-spectrum signals use a digital scheme called frequency hopping. The transmitter frequency changes abruptly, many times each second. Between "hops," the transmitter frequency is stable. The length of time that the transmitter remains on a given frequency between "hops" is known as the dwell time. A few spread-spectrum circuits employ continuous frequency variation, which is an analog scheme.
For more information: "What Is Spread Spectrum? - Definition from WhatIs.com." SearchNetworking. Web. 3 Nov. 2015.
How It Works Spread spectrum uses wideband, noise-like signals that are hard to detect, intercept, or demodulate. Additionally, spread-spectrum signals are harder to jam (interfere with) than narrow band signals. These low probability of intercept (LPI) and anti-jam (AJ) features are why the military has used spread spectrum for so many years. Spread-spectrum signals are intentionally made to be a much wider band than the information they are carrying to make them more noise-like.
Spread-spectrum transmitters use similar transmit power levels to narrowband transmitters. Because spread-spectrum signals are so wide, they transmit at a much lower spectral power density, measured in watts per hertz, than narrow band transmitters. This lower transmitted power density characteristic gives spread-spectrum signals a big plus. Spread-spectrum and narrowband signals can occupy the same band, with little or no interference. This capability is the main reason for all the interest in spread spectrum today.
The use of special pseudo noise (PN) codes in spread-spectrum communications makes signals appear wide band and noise-like. It is this very characteristic that makes spread-spectrum signals possess a low LPI. Spread-spectrum signals are hard to detect on narrow band equipment because the signal's energy is spread over a bandwidth of maybe 100 times the information bandwidth. See Figure 1.

The spread of energy over a wide band, or lower spectral power density, also makes spread-spectrum signals less likely to interfere with narrowband communications. Narrowband communications, conversely, cause little to no interference to spread spectrum systems because the correlation receiver effectively integrates over a very wide bandwidth to recover a spread spectrum signal. The correlator then "spreads" out a narrowband interferer over the receiver's total detection bandwidth.
Since the total integrated signal density or signal-to-noise ratio (SNR) at the correlator's input determines whether there will be interference or not. All spread spectrum systems have a threshold or tolerance level of interference beyond which useful communication ceases. This tolerance or threshold is related to the spread-spectrum processing gain, which is essentially the ratio of the RF bandwidth to the information bandwidth.
For more information: "Tutorial on Spread Spectrum Technology | EE Times." EETimes. Web. 3 Nov. 2015.
Where is Spread Spectrum most commonly used?
Over the last eight or nine years a new commercial marketplace has been emerging. Called spread spectrum, this field covers the art of secure digital communications that is now being exploited for commercial and industrial purposes. In the next several years hardly anyone will escape being involved, in some way, with spread spectrum communications. Applications for commercial spread spectrum range from "wireless" LAN's (computer to computer local area networks), to integrated bar code scanner/palmtop computer/radio modem devices for warehousing, to digital dispatch, to digital cellular telephone communications, to "information society" city/area/state or country wide networks for passing faxes, computer data, email, or multimedia data.
For more information: "An Introduction to Spread Spectrum Techniques." An Introduction to Spread Spectrum Techniques. Web. 3 Nov. 2015.
What is the designated IEEE standard?
IEEE 802.15.4a (formally called IEEE 802.15.4a-2007) was an amendment to IEEE 802.15.4-2006 specifying that additional physical layers (PHYs) be added to the original standard. It has been merged into and is superseded by IEEE 802.15.4-2011.
IEEE 802.15.4-2006 specified four different PHYs, three of which utilized direct-sequence spread spectrum (DSSS), and one which used parallel-sequence spread spectrum (PSSS). IEEE 802.15.4a specifies two additional PHYs using ultra-wideband (UWB) and chirp spread spectrum (CSS). The UWB PHY is designated frequencies in three ranges: below 1 GHz, between 3 and 5 GHz, and between 6 and 10 GHz. The CSS PHY is designated to the 2450 MHz ISM band.
For more information: Wikipedia. Wikimedia Foundation. Web. 3 Nov. 2015.
And so ends another exciting story filled with information to boggle the mind.
Recent Posts
See AllIt's been a long time since visiting this site. I've been searching for employment, haven't found the appropriate match for me. I've...
Hey, hey, hey, look who’s back! Harry N. Hacker here. The boss and Anne are on vacation this week, so I’m going to tell you about my...
Good afternoon to all you happy blog followers. Today we are going to investigate a software package called Moosoft’s The Cleaner. The...
Comentários